Sanglifehrins A, B, C and D, Novel Cyclophilin-binding Compounds

Isolated from Streptomyces sp. A92-308110

II. Structure Elucidation, Stereochemistry and Physico-chemical Properties

THEODOR FEHR, JÖRG KALLEN, LUKAS OBERER, JEAN-JACQUES SANGLIER* and WOLFGANG SCHILLING

Novartis Pharma Inc., Research, Department of Core Technology, CH-4002 Basel, Switzerland

(Received for publication February 1, 1999)

A novel class of macrolides, the sanglifehrins, was discovered by screening of actinomycete strains with a cyclophilin-binding assay. The chemical structures and absolute stereochemistries of the sanglifehrins A, B, C and D were determined unambiguously by NMR-techniques and by X-ray crystallography of the complex with cyclophilin A. Sanglifehrin A consists of a 22-membered macrocycle containing a tripeptide subunit and features in position 23 a chain of nine carbon atoms bearing a spirocyclic substituent. Sanglifehrins A and B are genuine metabolites whereas sanglifehrins C and D are artefacts.

Screening for cyclophilin binding metabolites from actinomycete strains led to the discovery of a novel class of compounds, which were named sanglifehrins. The taxonomy, fermentation, isolation and biological activity are described in the foregoing paper¹).

In this part we describe the structure elucidation mainly done by NMR-analysis, and give the chemical characteristics of these new microbial compounds.

Methods

Spectroscopy

The ¹H and ¹³C NMR spectra of the sanglifehrins were recorded in DMSO- d_6 on a Bruker Avance DMX-500 spectrometer with TMS as internal standard. The ¹H, ¹³C and ¹⁵N NMR shifts are listed in Table 2 and Table 3. The ¹⁵N-shift of N-6 was deduced from a feeding experiment with ¹⁵N labelled ornithine.

Other spectral data were recorded on the following instruments: IR spectra as KBr pellets on a FT-IR spectrometer Bruker IFS 66, UV spectra in methanol on Perkin Elmer Lambda 9 spectrometer and MS spectra on a VG-7044SE spectrometer, 8 keV Xenon with nitrobenzyl-alcohol as matrix operating in the FAB mode. For the mass spectrometry, the probe was mixed with LiI in order to establish the molecular ion peak

X-ray Crystallography

Sanglifehrin A was cocrystallized with cyclophilin A (CypA). X-ray intensity data to a resolution of 1.6 Å, at 20°C, have been collected at the Swiss-Norwegian-Beam-Line of the ESRF in Grenoble, France. The wavelength used was 0.873 Å, and the detector was a MAR image plate. Diffraction images were recorded with an exposure time of 80 seconds for 0.5° rotation per image, at a crystal-to-detector distance of 130 mm. Data processing was done with the programs DENZO 1.5.11 & Scalepack²⁾, and the CCP4 3.0-package³⁾. The overall R_{sym} on intensities for a total of 179130 measurements of 41552 independent reflections in the resolution range 15 Å ~ 1.6 Å (completeness 99.2%) was 7.5%. The structure was solved by molecular replacement and refined with the program X-PLOR, Version 3.1⁴).

Results

Sanglifehrins A and B are true natural products as supported by analytical HPLC control during the fermentation (data not shown) whereas sanglifehrins C and D are artefacts formed during the isolation process respectively from sanglifehrins A and B by addition of methanol.

The molecular formulas of the sanglifehrins were revealed by FAB-MS and elementary analysis to be $C_{60}H_{91}N_5O_{13}$ for sanglifehrin A, $C_{60}H_{89}N_5O_{12}$ for B, $C_{61}H_{93}N_5O_{13}$ for C and $C_{61}H_{91}N_5O_{12}$ for D. The UV and IR spectra of the 4 compounds resembled one another suggesting their structural similarity. The IR spectra exhibited characteristic and main absorption at $1645 \sim 1650 \text{ cm}^{-1}$ giving incidence for several amide bonds.

The chemical structure of the four sanglifehrins is given in Figure 1. The physico-chemical properties of the sanglifehrins are summarised in Table 1.

NMR Spectra

The NMR data are given in Table 2 and Table 3. Three parts, namely the 22 membered cyclic macrolide from C-1 to C-23, the linker part from C-24 to C-32 and the unique spiro ring system from C-33 to N-42 constitute the complex structure of the sanglifehrins.

Macrolide

Valine, *meta*-tyrosine and 1,2-piperazine-3-carboxylic acid form a peptide part. The sequence is based on sequential NOE's. An inverse ¹H-¹⁵N-HSQC confirms the hydrazide group of the 1,2-piperazine-3-carboxylic acid by the ¹⁵N shift of NH-6' at 83 ppm . All other NH's have typical amide shifts in the range of $115 \sim 130$ ppm.

An extended spin system from C-13 to C-23, consisting of a conjugated (E, E)-diene, two secondary OH-, a secondary methyl- and a methylene-group, concludes the macrolide. The carbonyl group C-13 forms an amide with valine and the oxygen of C-23 forms an ester with the acyl group of 1,2-piperazine-3-carboxylic acid. The attached butan-2-one moiety at C-14 in sanglifehrin A and B forms a ketal with methanol and the 15-OH group in sanglifehrin C and D.

C24-C32 Linker

The C24-C32 linker connects the macrolide with the spirobicyclic ring system. A methyl-substituted conjugated (E, E)-diene subunit is followed by a C28 to C32 aliphatic part, which bears a methyl and a hydroxy substituent in positions 30 and 31, respectively.

Spiro Ring System

This subunit consists of two 6-memebered rings, fused as a spirobicyclic system at C-37, which resonates at 86.9 ppm. One of these rings bears an ether linkage and the other one forms a lactam. In sanglifehrin A and C, the ether ring is in a chair conformation with two equatorial methyl- and an axial OH-group. Sanglifehrins B and D possess a C-35, C-36 double bound, formally arising from dehydratation of the C-35 hydroxyl of sanglifehrin A and C, respectively. The lactam ring is suggested to be in a boat conformation to allow the methyl group at C-38 and the ethyl group at C-40 to be equatorial.

Absolute Configuration

The absolute configurations of sanglifehrin A were determined by X-ray crystallography of the cyclophilin A/sanglifehrin A complex at 1.6 Å resolution, as shown in the Figure 1. The full details of this structure are going to be published in due time. The absolute configuration of sanglifehrins B, C and D were deduced by spectroscopic and chemical correlation with sanglifehrin A.

Sanglifehrins are a novel type of microbial metabolites of high molecular complexity. The 22-membered macrocycle of the molecules contains not only a polyketide chain but also a tripeptide subunit. This tripeptide consists of valine and two rather unusual amino acids, piperazic acid and *meta*-tyrosine. In contrast to other naturally occurring peptides which contain piperazic acid, in the present case the β -nitrogen (N6) of this amino acid is involved in amide bond formation, and not the α -nitrogen (N6'). The macrocycle features in position 23 a chain of nine carbon atoms bearing a spirocyclic substituent as its terminus. The differences in the four presented sanglifehrins are located in position 35 or 53 or 35 and 53. Additional natural sanglifehrin analogues will be described later.

Fig. 1. Structure of sanglifehrins A, B, C, and D.

Table 1. Physico-chemical properties of sanglifehrins $A \sim D$.

	А	В	С	D
Appearance	White powder amorphous	White powder amorphous	White crystals crystalline	White powder amorphous
$\left[\alpha\right]_{\rm D}^{20}$ (MeOH)	-67.3° (c = 0.99)	-52.8° (c=1.1)	-35.6° (c=0.74)	-23.2° (c=0.98)
mp (°C)	142~145	117~121	165~170	137~142
Molecular formula	$C_{60}H_{91}N_5O_{13}$	C ₆₀ H ₈₉ N ₅ O ₁₂	C ₆₁ H ₉₃ N ₅ O ₁₃	$\dot{C}_{61}H_{91}N_5O_{12}$
Molecular weight	1090.42	1072.40	1104.45	1086.43
FAB-MS (m/z)	$1096 (M + Li)^+$	$1078 (M + Li)^+$	$1110 (M + Li)^+$	$1092 (M + Li)^+$
	$1102 (M + 2Li-H)^+$	$1084 (M + 2Li-H)^+$	$1116 (M + 2Li-H)^+$	$1098 (M + 2Li-H)^+$
UV (MeOH) λ_{max} nm (ε)	275 (1962)	273 (4395)	275 (1876)	273 (3194)
	242 (54500)	242 (50600)	242 (51557)	242 (47584)
IR (KBr) v_{max} cm ⁻¹	1734, 1718,	1734, 1718,	1735, 1646,	1735, 1650,
	1645, 1521,	1648, 1519,	1522, 1458,	1522, 1457,
	1458, 1236,	1457, 1236,	1236, 1227,	1379, 1226,
	1164, 986	1163, 990	1164, 983	1164, 989

NMR-shifts of sanglifehrin A ¹ H and ¹³ C:10 mg/0.5 ml DMSO					NMR-shifts of sanglifehrin B ¹ H and ¹³ C:5 mg/0.5 ml DMSO						
Pos.	Group	$\delta^{13}C^*$ $\delta^{15}N$	δ ¹ H**	Multipli- city***	Coupling const. Hz	Pos.	Group	$ \begin{array}{c} \delta {}^{13}\mathrm{C}^{*} \\ \delta {}^{15}\mathrm{N} \end{array} $	d 1H**	Multipli- city***	Coupling const. Hz
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 35 \\ 36 \\ 37 \\ 38 \\ 9 \\ 40 \\ 41 \\ 42 \\ 44 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 51 \\ 52 \\ 53 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 61 \\ 62 \\ 63 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61$	$ \begin{array}{c} {\rm COH}_{12} {\rm C2H}_{2} {\rm CH}_{2} $	170.6 58.0 27.4 22.5 40.5 15N: 140.8 15N: 83.0 172.0 48.9 15N: 125.0 170.1 57.8 15N: 116.5 174.7 51.4 71.5 40.8 74.4 134.4 130.6 131.3 129.7 36.5 77.8 132.9 126.1 125.6 136.3 30.9 32.8 38.7 69.6 38.1 66.6 40.8 73.3 37.6 86.9 30.7 28.7 41.0 174.1 15N: 129.1 25.8 12.4 15.2 13.5 14.8 14.6 13.0 15.4 23.2 40.4 208.1 30.1 30.5 20.2 17.9 39.3 138.4 116.7 157.4 113.3 130.0 120.2	$\begin{array}{c} 1.92\\ 1.45\\ 1.65/1.30\\ 4.20/2.65\\ \hline\\ 4.82\\ 5.70\\ 8.15\\ \hline\\ 4.35\\ 7.50\\ \hline\\ 2.18\\ 3.80\\ 5.43\\ 1.64\\ 3.92\\ 4.78\\ 5.75\\ 6.35\\ 6.10\\ 5.72\\ 2.55/2.30\\ 5.95\\ 6.20\\ 5.70\\ 2.10/1.90\\ 1.50/1.12\\ 1.35\\ 3.52\\ 4.05\\ 1.50/1.20\\ 3.70\\ 1.35\\ 3.57\\ 5.58\\ 1.72\\ 1.90\\ 1.50/1.20\\ 3.70\\ 1.35\\ 3.57\\ 5.58\\ 1.72\\ 1.90\\ 1.50/1.20\\ 3.70\\ 1.35\\ 3.57\\ 5.58\\ 1.72\\ 1.90\\ 1.90/1.40\\ 2.05\\ 7.90\\ 1.65/1.45\\ 0.85\\ 0.85\\ 0.75\\ 2.80/2.70\\ 6.52\\ 9.21\\ 6.60\\ 7.07\\ 6.58\\ \end{array}$	m m 2xm 2xm 2xm d m d d d d d d d d d d d d d d d d d	12 8.2 9 15\6 15\11 15\11 15\7\8 11\2 11 15\7\7	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\15\\16\\17\\18\\19\\20\\122\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\45\\36\\37\\38\\940\\142\\43\\445\\67\\152\\53\\54\\55\\66\\1\\61\\62\\63\\64\end{array}$	$\begin{array}{l} CO \\ CH \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	170.6 58.0 27.4 22.5 40.5 172.0 48.9 170.1 57.8 174.7 51.4 71.5 40.8 74.4 134.4 130.6 131.3 129.7 36.5 77.8 132.9 126.1 125.6 136.3 30.9 33.8 38.5 70.6 38.3 70.7 34.9 132.5 132.2 85.2 31.2 28.5 41.5 175.0 26.0 12.5 15.0 12.5 15.0 12.5 15.0 12.5 15.0 12.5 15.0 12.5 15.0 11.0 23.2 40.4 208.1 30.1 30.5 20.2 17.9 39.3 138.4 116.7 157.4 113.3 130.0 120.2	$\begin{array}{c} 1.92\\ 1.45\\ 1.65/1.30\\ 4.20/2.65\\ 4.50\\ 5.70\\ 8.12\\ 4.35\\ 7.51\\ 2.18\\ 3.80\\ 5.43\\ 1.64\\ 3.92\\ 4.78\\ 5.75\\ 6.35\\ 6.10\\ 5.72\\ 2.55/2.30\\ 5.03\\ 5.95\\ 6.20\\ 5.70\\ 2.10/1.90\\ 1.50/1.12\\ 1.45\\ 3.50\\ 4.02\\ 1.58/1.30\\ 3.42\\ 1.82\\ 5.42\\ 1.95\\ 2.00/1.42\\ 2.10\\ 8.05\\ 1.70/1.50\\ 0.91\\ 0.75\\ 1.59\\ 0.85\\ 0.80\\ 1.70\\ 0.60\\ 1.75/1.70\\ 2.33/2.25\\ 2.05\\ 1.95\\ 0.85\\ 0.75\\ 2.80/2.70\\ 6.52\\ 9.21\\ 6.60\\ 7.07\\ 6.58\\ \end{array}$	m m 2xm 2xm d m d dxd d d m m m m dxd dxd dxd d dxd dx	12 8.2 9 15\6 15\11 15\11 15\7\8 11\2 11 15\7\7

Table 2. NMR-data of sanglifehrins A and B.

* ¹³C-shifts relative DMSO- $d_6 = 39.9$ ppm. ** ¹H-shifts relative DMSO- $d_6 = 2.5$ ppm. *** s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet. ¹⁵N-shifts: Relative urea = 75 ppm.

NMR-shifts of sanglifehrin C ¹ H and ¹³ C: 10 mg/0.5 ml DMSO					NMR-shifts of sanglifehrin D ¹ H and ¹³ C: 10 mg/0.5 ml DMSO						
Pos.	Group	$\delta^{13}C^*$ $\delta^{15}N$	δ ¹ H**	Multipli- city***	Coupling const. Hz	Pos.	Group	$\delta^{13}C^*$ $\delta^{15}N$	δ ¹ H**	Multipli- city***	Coupling const. Hz
Pos. 1 2 3 4 5 6' 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 41 42 5 5 5 5 5 5 5 5 5 5 5 5 5	N 1H Group CO CH CH ₂ CH ₂	$\begin{array}{c} \text{MR-shifts c} \\ \text{and} \ ^{13}\text{C}: 10 \\ \hline & \delta \ ^{13}\text{C}: 10 \\ \hline & \delta \ ^{15}\text{N} \\ \hline & 170.6 \\ \hline & 59.1 \\ 26.7 \\ 22.8 \\ 40.5 \\ \hline & 172.2 \\ 48.9 \\ \hline & 171.2 \\ 57.1 \\ \hline & 173.5 \\ 44.4 \\ 73.7 \\ 40.2 \\ 73.2 \\ \hline & 135.1 \\ 130.7 \\ 132.7 \\ 129.8 \\ 36.5 \\ 78.8 \\ 133.4 \\ 126.6 \\ 126.0 \\ 136.6 \\ 30.9 \\ 32.8 \\ 38.7 \\ 69.9 \\ \hline & 32.8 \\ 38.7 \\ 69.9 \\ \hline & 38.1 \\ 66.9 \\ 40.8 \\ 73.4 \\ \hline & 37.6 \\ 87.2 \\ 30.7 \\ 28.7 \\ 41.0 \\ 174.4 \\ \hline \end{array}$	f sanglifehri mg/0.5 ml D δ 1H** 2.15 1.45 1.65/1.30 4.20/2.65 4.82 5.70 8.28 4.35 6.95 2.30 3.62 2.38 3.70 4.65 5.75 6.35 6.10 5.72 2.55/2.30 5.03 5.95 6.20 5.70 2.10/1.90 1.50/1.12 1.35 3.52 4.05 1.50/1.20 3.70 1.35 3.57 5.60 1.72 1.90 1.90/1.40 2.05 7.90	n C MSO Multipli- city*** m m 2xm 2xm d m d d d d d d d d d d d d d d d d d	Coupling const. Hz 8.2 9 15\6 15\11 15\11 15\11 15\7\8 11\2 11 15\11 15\7\7	Pos. 1 2 3 4 5 6' 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 41 42 43	N 1 H Group CO CH CH ₂ CH ₂	MR-shifts o and ${}^{13}C:10$ $\delta {}^{13}C*$ $\delta {}^{15}N$ 170.6 58.0 27.4 22.5 40.5 172.0 48.9 170.1 57.8 174.7 44.4 73.7 40.2 73.2 135.1 130.7 131.3 129.7 36.5 77.8 132.9 126.1 125.6 136.3 30.9 33.8 38.5 70.6 38.3 70.7 34.9 132.5 132.2 85.2 31.2 28.5 41.5 175.0 25.5	f sanglifehri mg/0.5 ml D δ 1H** 1.92 1.45 1.65/1.30 4.20/2.65 4.82 5.70 8.28 4.35 6.95 2.30 3.62 2.38 3.70 4.65 5.75 6.35 6.10 5.72 2.55/2.30 5.03 5.95 6.20 5.70 2.10/1.90 1.50/1.12 1.45 3.50 4.02 1.58/1.30 3.42 1.59/1.42 2.10/1.42	n D MSO Multipli- city*** m m 2xm 2xm d d d d d d d d d d d d d d d d d d d	Coupling const. Hz 12 8.2 9 15\6 15\11 15\11 15\11 15\7\8 11\2 11 15\11 15\7\7
$\begin{array}{c} 44\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 63\\ 64\\ 65\\ \end{array}$	$\begin{array}{c} \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}$	12.4 15.2 13.5 14.8 14.6 13.0 15.4 23.6 32.0 98.6 24.4 30.5 20.2 17.9 39.3 139.0 117.1 157.8 113.4 129.9 120.6 48.1	$\begin{array}{c} 1.00, 1.5\\ 0.85\\ 0.85\\ 0.75\\ 0.80\\ 1.68\\ 0.85\\ 1.90/1.60\\ 1.62\\ 1.21\\ 1.95\\ 0.85\\ 0.75\\ 2.80/2.70\\ 6.59\\ 9.22\\ 6.60\\ 7.07\\ 6.68\\ 3.12\\ \end{array}$	d d d d s d 2xm m d m d d 2xm s s d t d s		$\begin{array}{c} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 63\\ 64\\ 65\end{array}$	$\begin{array}{c} \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}_2\\ \mathrm{CH}_3\\ \mathrm{CH}$	14.0 14.0 18.0 14.8 15.1 13.2 23.2 31.8 98.5 24.0 30.5 20.2 17.9 39.3 138.4 116.7 157.4 113.3 130.0 120.2 48.1	$\begin{array}{c} 0.79\\ 0.79\\ 1.58\\ 0.88\\ 0.88\\ 1.69\\ 0.75\\ 1.95/1.65\\ 1.60\\ 1.27\\ 1.95\\ 0.89\\ 0.79\\ 2.80/2.70\\ 6.59\\ 9.21\\ 6.60\\ 7.07\\ 6.68\\ 3.12\\ \end{array}$	d d d s d 2xm m d d 2xm s d t d s	

Table 3. NMR-data of sanglifehrins C and D.

*¹³C-shifts relative DMSO- d_6 =39.9 ppm. **¹H-shifts relative DMSO- d_6 =2.5 ppm. *** s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet. ¹⁵N-shifts: Relative urea=75 ppm.

Acknowledgments

We thank C. QUIQUEREZ for MS- and HU. GREMLICH for IR-spectra, R. BAENTELI for the ¹⁵N-labeling, C. DALVIT for expert technical assistance in NMR and M.Zurini for the purification of recombinant human CypA. In addition we would like to thank K. KNUDSEN and P. PATTISON for assistance in using the Swiss-Norwegian-Beam-Line at the ESRF (Grenoble, F). We thank Dr. R. SEDRANI for the critical review of this paper.

References

1) SANGLIER, J. J.; V. QUESNIAUX, T. FEHR, H. HOFMANN,

M. MANKE, K. MEMMERT, W. SCHULER, G. ZENKE, L. GSCHWIND, C. MAURER & W. SCHILLING: Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from *Streptomyces* sp. $A92 \sim 308110$. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiotics 52: 466~473, 1999

- OTWINOWSKI, Z. & W. MINOR: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307 ~ 326, 1996
- Collaborative Computational Project No.4. The CCP4 Suite: programs for protein crystallography. Acta Cryst. D 50: 760~763, 1994
- BRUENGER, A. T.: X-PLOR Version 3.1: A system for X-ray Crystallography and NMR. Yale University Press, New Haven, CT, USA. 1992